

An efficient binary multiplier design for high speed
applications using Karatsuba algorithm and Urdhva-

Tiryagbhyam algorithm

Abstract: Binary multiplication is an important operation

in many high power computing applications and floating point
multiplier designs. And also multiplication is the most time,
area and power consuming operation. This paper proposes an
efficient method for unsigned binary multiplication which
gives a better implementation in terms of delay and area. A
combination of Karatsuba algorithm and Urdhva-Tiryagbhyam
algorithm (Vedic Mathematics) is used to implement the
proposed unsigned binary multiplier. Karatsuba algorithm is
best suited for higher bits and Urdhva-Tiryagbhyam algorithm
is best for lower bit multiplication. A new algorithm by
combining both helps to reduce the drawbacks of both. The
multiplier is implemented using Verilog HDL, targeted on
Spartan-3E and Virtex-4 FPGA.

Keywords: fpga, binary multiplier, unsigned, Vedic
mathematics, Urdhva-Tiryagbhyam, Karatsuba

I. INTRODUCTION
 Binary multiplication is the most important operation in
binary arithmetic. Applications such as High Power Computing
(HPC), Image processing and Signal processing is based on
binary multiplication. Area and delay requirements of
conventional binary multipliers are much more and hence
efficient multiplication algorithms are used to reduce delay and
area requirement. Various multiplication algorithms are
described in [1]. Vedic mathematics methods [2] are the most
efficient in terms of delay and area. There are many literatures
available on Vedic mathematics methods [3, 4, 5, 6, 7, 8 and
9]. Karatsuba algorithm [10, 11] is the most used algorithm for
higher bit length multipliers. But every algorithm has its own
advantages and disadvantages. In the proposed model, a
combination of Urdhva-Tiryagbhyam algorithm (Vedic
mathematics) and Karatsuba algorithm is used. By combining
these two algorithms, best features of both the algorithms can
be used in an efficient manner to reduce both delay and area.

II. KARATSUBA-URDHVA TIRYAGBHYAM BINARY
MULTIPLIER

The proposed model, Karatsuba-Urdhva binary multiplier, uses
a combination of Karatsuba algorithm and Urdhva-
Tiryagbhyam algorithm to make multiplication more efficient.
Multiplication operation requires more time compared to
addition. And as the number of bits increase, it consumes more
area and time. In the design of floating point multiplier,
unsigned binary multiplier is the important part. In double
precision floating point format, we need a 53x53 bit multiplier
and in single precision format we need 24x24 bit multiplier. It
requires much time to perform these operations and it is the
major contributor to the delay of the floating point multiplier.
As the number of bits of operands increases, area and delay
requirement increases drastically. The proposed model make
the multiplication operation more area efficient and faster.
 Karatsuba algorithm uses a divide and conquer approach
where it breaks down the inputs into Most Significant half and
Least Significant half and this process continues until the
operands are of 8-bits wide. Karatsuba algorithm is best suited
for operands of higher bit length. But at lower bit lengths, it is
not as efficient as it is at higher bit lengths. To eliminate this
problem, Urdhva Tiryagbhyam algorithm is used at the lower
stages. The model of Urdhva-Tiryagbhyam algorithm is shown
in Fig. 1.
 Urdhva Tiryagbhyam algorithm is the best algorithm for
binary multiplication in terms of area and delay. But as the
number of bits increases, delay also increases as the partial
products are added in a ripple manner. For example, for 4-bit
multiplication, it requires 6 adders connected in a ripple
manner. And 8-bit multiplication requires 14 adders and so on.
Compensating the delay will cause increase in area. So Urdhva
Tiryagbhyam algorithm is not that optimal if the number of bits
is much more. If we use Karatsuba algorithm at higher stages
and Urdhva Tiryagbhyam algorithm at lower stages, it can
somewhat compensate the limitations in both the algorithms
and hence the multiplier becomes more efficient. The circuit is

R.K.Sharma

School of VLSI Design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
rksharama@nitkkr.ac.in

Arish S

School of VLSI Design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
arishsu@gmail.com

Cite as: S. Arish and R. K. Sharma, "An efficient binary multiplier design for high speed applications using Karatsuba algorithm and Urdhva-Tiryagbhyam algorithm,"
2015 Global Conference on Communication Technologies (GCCT), Thuckalay, 2015, pp. 192-196. doi: 10.1109/GCCT.2015.7342650

further optimized by using carry select and
instead of ripple carry adders. This reduces t
extent with minimal increase in hardw
algorithms are explained in detail in the belo

A. Urdhva Tiryagbhyam algorithm for multi
 Urdhva-Tiryagbhyam sutra is an ancient V
method for multiplication [2, 3, 4 and 5]. It i
applicable to all cases of multiplication. Th
short and consists of only one compound
‘Vertically and crosswise’. In Urdhva Tiryag
the number of steps required for multiplicati
and hence the speed of multiplication is incre
 An illustration of steps for computing the
bit numbers is shown below [6, 7]. The two
and b3b2b1b0 and let the p7p6p5p4p3p2p1
And the temporary partial products are t
partial products are obtained from the steps
line notation of the steps is shown in Fig. 2.

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0.
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 + a0b1.
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 + a1b1 + a0b2
Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 + a2b1 + a1b2 +
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 + a2b2 + a1b3.
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 + a2b3.
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3

The product is obtained by adding s1, s2
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ

Product ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ
 t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1
 t3ሾ2ሿ 0 0 0

 p7 p6 p5 p4 p3 p2 p1

Fig. 1 Karatsuba-Urdhva multiplier

d carry save adders
the delay to a great
ware. These two
w sections.

iplication
Vedic mathematics
s a general formula
he formula is very

d word and means
gbhyam algorithm,
ion can be reduced
eased.
e product of two 4-
input are a3a2a1a0 1p0 be the product. 0, t1, t2, … , t6. The

s given below. The

+ a0b3.
 ܽ݊݀ s3 as shown
m obtained.

 t0 + 1ሿ 0 + 0 0 p0

This method can be further opt
hardware. A more optimized h
shown in Fig. 3. This model
need for three operand 7-bit add

and delay. The adders are conne
 The expressions for product b
 p0 ൌ a0b0 p1 ൌ ൌ ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺa1b0 ݂ ܤܵܮ +p2 ൌ ൌ ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺAp3 ݂ ܤܵܮ ൌ ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ

 ൌ ሺMSBሺADa1b2+a0b3 p4 ݂ ܤܵܮ ൌ ൌ ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺADp5 ݂ ܤܵܮ ൌ ൌܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺp6 ݂ ܤܵܮ ൌ ൌܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMp7 ݂ ܤܵܮ ൌ ܧܦܦܣ ݂ ݕݎݎܽܥ

Since there are more than two
can use carry save addition to
technique reduces the delay to
ripple carry adder.

model

Fig. 2 Line notation o

timized to reduce the number of
hardware architecture [7, 9] is
actually helps to eliminate the
der and hence reduces hardware

ected in ripple manner.
bits are as shown below.

2ሻ൯ DDER1ሻ+a2b0 ܴܧܦܦ 1ሻ൯ a0b1ሻ ܴܧܦܦ + a1b1 + a0b2ሻ 3 ܴܧܦܦሻ൯ DER 2ሻ+a3b0 + a2b1 4ሻ൯ DDER1ሻ+a3b1 ܴܧܦܦ+ + a2b2 + a1b3ሻ 5 ܴܧܦܦሻ൯ ሺADDER1ሻ+a3b2 + a2b3ሻ 6 ܴܧܦܦሻ൯ MSBሺADDER1ሻ+a3b3ሻ 6 ܴܧ

operands in adders 2 to 5, we
implement adders 2 to 5. This
a great extend compared to the

f Urdhva Tiryagbhyam sutra

B. Karatsuba Algorithm for multiplication
 Karatsuba multiplication algorithm [10, 1
multiplying very large numbers. This metho
Anatoli Karatsuba in 1962. It is a divide an
in which we divide the numbers into their M
and Least Significant half and then multiplic
Karatsuba algorithm reduces the numb
required by replacing multiplication opera
operations. Additions operations are faster th
and hence the speed of multiplier is increas
of bits of inputs increase, Karatsuba algorit
efficient. This algorithm is optimal if width
than 16 bits. The hardware architecture of K
is shown in Fig. 4.
Productൌ ܺ. ܻ
X and Y can be written as, ܺ ൌ 2/ଶ. Xl + Xr ܻ ൌ 2/ଶ. Yl + Yr

Fig. 3 Hardware architecture for 4x4 Ur

Tiryagbhyam multiplier.

1] is best suited for
od is discovered by
nd conquer method,
ost Significant half

cation is performed.
er of multipliers
ations by addition
han multiplications
sed. As the number
thm becomes more
h of inputs is more

Karatsuba algorithm

 (1)
 (2)

Where Xl, Yl and Xr, Yr are
Least Significant half of X an
number of bits.
Then, ܺ. ܻ ൌ ቀ2మ. Xl + Xrቁ . ሺ2మ. Yl
 ൌ 2. Xl Yl + 2/ଶ ሺ Xl Yr +
The Second term in equation (3
number of multiplication operat

i.e.; Xl Yr + Xr Yl ൌ ሺ Xl + Xrሻ

The equation (3) can be re-writt
 ܺ. ܻ ൌ 2. Xl Yl + Xr Yr + 2మ ሺ
 െ Xl
The recurrence of Karatsuba algܶሺ݊ሻ ൌ 3ܶ ቀ2݊ቁ +

III. IMPLIMENTA

 The main objective of this pa
an unsigned multiplier which m
both in terms of delay and ar
most important and complex op
designed a multiplier which c
increase in delay and area is sig
number of bits. Proposed u
implemented using Verilog H
units are further optimized by
efficient adders like carry selec
The model is synthesized and si
Tools (ISE 14.7) targeted on
The summary of results on Vi

rdhva

Fig. 4 Karatsub

the Most Significant half and
nd Y respectively, and n is the

+ Yrሻ Xr Ylሻ + Xr Yr (3)

) can be optimized to reduce the
tions. ሻሺ Yl + Yrሻ െ Xl Yl െ Xr Yr

 (4)
ten as, ሺሺ Xl + Xrሻሺ Yl + Yrሻ Yl െ Xr Yrሻ (5)
gorithm is, + ܱሺ݊ሻ ܱሺ݊ଵ.ହ଼ହሻ

ATION AND RESULTS
aper is to design and implement

must be efficient in its operation
rea. Since multiplication is the
peration in binary arithmetic, we
can operate at high speed and
gnificantly less with increase in
unsigned binary multiplier is
DL and tested. The multiplier

y replacing simple adders with
ct adders and carry save adders.
imulated using Xilinx Synthesis
Saprtan-3E and Virtex-4 fpga.

irtex-4 fpga is given in table I.

ba multiplier

Comparison with various multiplier units is given in tables II,
III, IV and V

IV. CONCLUSION AND FUTURE WORK
 This paper shows how to effectively reduce the percentage
increase in delay and area of a multiplier by using a very

efficient combination of Karatsuba and Urdhva-Tiryagbhyam
algorithms. The model can be further optimized in terms of
delay by using pipelining methods and also by using efficient
adders instead of ripple adders.

REFERENCES

[1] Computer Arithmetic, Behrooz Parhami, Oxford

University Press, 2000.
[2] “Vedic mathematics”, Swami Sri Bharati Krsna Thirthaji

Maharaja, Motilal Banarasidass Indological publishers and
Book sellers, 1965

[3] R. Sridevi, Anirudh Palakurthi, Akhila Sadhula, Hafsa
Mahreen, “Design of a High Speed Multiplier (Ancient
Vedic Mathematics Approach)”, International Journal of
Engineering Research (ISSN : 2319-6890), Volume No.2,
Issue No.3, pp : 183-186, July 2013

[4] Nivedita A. Pande, Vaishali Niranjane, Anagha V.
Choudhari, “Vedic Mathematics for Fast Multiplication in
DSP”, International Journal of Engineering and Innovative
Technology (IJEIT), Volume 2, Issue 8, pp. 245-247,
February 2013

[5] R.K. Bathija, R.S. Meena, S. Sarkar, Rajesh Sahu, “Low
Power High Speed 16x16 bit Multiplier using Vedic
Mathematics”, International Journal of Computer
Applications (0975 – 8887), Volume 59– No.6, pp. 41-44,
December 2012

[6] Poornima M, Shivaraj Kumar Patil, Shivukumar , Shridhar
K P , Sanjay H, “Implementation of Multiplier using
Vedic Algorithm”, International Journal of Innovative
Technology and Exploring Engineering (IJITEE), ISSN:
2278-3075, Volume-2, Issue-6, pp. 219-223, May 2013

[7] Premananda B.S., Samarth S. Pai, Shashank B., Shashank
S. Bhat, “Design and Implementation of 8-Bit Vedic
Multiplier”, International Journal of Advanced Research
in Electrical, Electronics and Instrumentation Engineering,
Vol. 2, Issue 12, pp. 5877-5882, December 2013

TABLE I
Performance analysis of Karatsuba-Urdhva multipliers

 8-bit

multiplier
16-bit

multiplier
24-bit

multiplier
32-bit

multiplier

Slices 113 410 972 1389

LUTs 120 451 1018 1545

IOBs 33 65 97 129

Delay 9.396ns 11.514ns 12.996ns 13.141ns

݂௫
(MHz)

274.469 248.964 226.508 209.606

Logic
levels

14 22 31 39

TABLE II
Delay comparison of various 8-bit multipliers with proposed

Karatsuba-Urdhva multiplier
 Ref. [6] Ref. [7] Ref. [8] Proposed

multiplier
Width 8-bit 8-bit 8-bit 8-bit

Delay 28.27ns 15.050ns 23.973ns 9.396ns

TABLE III
 Delay comparison of various 16-bit multipliers with proposed

Karatsuba-Urdhva multiplier
 Ref. [12]-vedic

multiplier
Ref. [5] Proposed

multiplier
Width 16-bit 16-bit 16-bit

Delay 13.452ns 27.148ns 11.514ns

TABLE IV

Delay and area comparison of 24-bit multipliers with proposed
Karatsuba-Urdhva multiplier

 Slices LUTs Delay
Ref. [13] 1306 2329 16.316ns

Proposed
multiplier

972 1018 12.996ns

TABLE V
 Delay and area comparison of 32-bit multipliers with

proposed Karatsuba-Urdhva multiplier
 LUTs Delay

Ref. [12]- Modified Booth
multiplier (Radix-8)

2721 12.081ns

Ref. [12]- Modified Booth
multiplier (Radix-16)

7161 11.564ns

Ref. [12] 2704 9.536ns

Proposed multiplier 1545 13.141ns

[8] R. Sai Siva Teja, A. Madhusudhan, “FPGA
Implementation of Low-Area Floating Point Multiplier
Using Vedic Mathematics”, International Journal of
Emerging Technology and Advanced Engineering, ISSN
2250-2459, Volume 3, Issue 12, pp. 362-366, December
2013.

[9] Harpreet Singh Dhillon, Abhijit Mitra, “A Reduced-Bit
Multiplication Algorithm for Digital Arithmetic”, World
Academy of Science, Engineering and Technology, Vol
19, pp. 719-724, 2008

[10] N.Anane, H.Bessalah, M.Issad, K.Messaoudi, “Hardware
implementation of Variable Precision Multiplication on
FPGA”, 4th International Conference on Design &
Technology of Integrated Systems in Nanoscale Era, pp.
77-81, 2009

[11] Anand Mehta, C. B. Bidhul, Sajeevan Joseph,
Jayakrishnan. P, “Implementation of Single Precision
Floating Point Multiplier using Karatsuba Algorithm”,
2013 International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), pp.
254-256, 2013

[12] Jagadeshwar Rao M, Sanjay Dubey, “A High Speed and
Area Efficient Booth Recoded Wallace Tree Multiplier for
fast Arithmetic Circuits”, 2012 Asia Pacific Conference on
Postgraduate Research in Microelectronics & Electronics
(PRIMEASIA), pp. 220-223, 2012.

[13] Anna Jain, Baisakhy Dash, Ajit Kumar Panda, Muchharla
Suresh, “FPGA Design of a Fast 32-bit Floating Point
Multiplier Unit”, International Conference on Devices,
Circuits and Systems (ICDCS), pp. 545-547, 2012.

View publication stats

https://www.researchgate.net/publication/308190245

