
 
 

An efficient binary multiplier design for high speed 
applications using Karatsuba algorithm and Urdhva-

Tiryagbhyam algorithm

 
Abstract: Binary multiplication is an important operation 

in many high power computing applications and floating point 
multiplier designs. And also multiplication is the most time, 
area and power consuming operation. This paper proposes an 
efficient method for unsigned binary multiplication which 
gives a better implementation in terms of delay and area. A 
combination of Karatsuba algorithm and Urdhva-Tiryagbhyam 
algorithm (Vedic Mathematics) is used to implement the 
proposed unsigned binary multiplier. Karatsuba algorithm is 
best suited for higher bits and Urdhva-Tiryagbhyam algorithm 
is best for lower bit multiplication. A new algorithm by 
combining both helps to reduce the drawbacks of both. The 
multiplier is implemented using Verilog HDL, targeted on 
Spartan-3E and Virtex-4 FPGA. 

Keywords: fpga, binary multiplier, unsigned, Vedic 
mathematics, Urdhva-Tiryagbhyam, Karatsuba 

I. INTRODUCTION  
    Binary multiplication is the most important operation in 
binary arithmetic. Applications such as High Power Computing 
(HPC), Image processing and Signal processing is based on 
binary multiplication. Area and delay requirements of 
conventional binary multipliers are much more and hence 
efficient multiplication algorithms are used to reduce delay and 
area requirement. Various multiplication algorithms are 
described in [1]. Vedic mathematics methods [2] are the most 
efficient in terms of delay and area. There are many literatures 
available on Vedic mathematics methods [3, 4, 5, 6, 7, 8 and 
9]. Karatsuba algorithm [10, 11] is the most used algorithm for 
higher bit length multipliers. But every algorithm has its own 
advantages and disadvantages. In the proposed model, a 
combination of Urdhva-Tiryagbhyam algorithm (Vedic 
mathematics) and Karatsuba algorithm is used. By combining 
these two algorithms, best features of both the algorithms can 
be used in an efficient manner to reduce both delay and area. 

II. KARATSUBA-URDHVA TIRYAGBHYAM BINARY 
MULTIPLIER 

The proposed model, Karatsuba-Urdhva binary multiplier, uses 
a combination of Karatsuba algorithm and Urdhva-
Tiryagbhyam algorithm to make multiplication more efficient. 
Multiplication operation requires more time compared to 
addition. And as the number of bits increase, it consumes more 
area and time. In the design of floating point multiplier, 
unsigned binary multiplier is the important part. In double 
precision floating point format, we need a 53x53 bit multiplier 
and in single precision format we need 24x24 bit multiplier. It 
requires much time to perform these operations and it is the 
major contributor to the delay of the floating point multiplier. 
As the number of bits of operands increases, area and delay 
requirement increases drastically. The proposed model make 
the multiplication operation more area efficient and faster. 
    Karatsuba algorithm uses a divide and conquer approach 
where it breaks down the inputs into Most Significant half and 
Least Significant half and this process continues until the 
operands are of 8-bits wide. Karatsuba algorithm is best suited 
for operands of higher bit length. But at lower bit lengths, it is 
not as efficient as it is at higher bit lengths. To eliminate this 
problem, Urdhva Tiryagbhyam algorithm is used at the lower 
stages. The model of Urdhva-Tiryagbhyam algorithm is shown 
in Fig. 1. 
    Urdhva Tiryagbhyam algorithm is the best algorithm for 
binary multiplication in terms of area and delay. But as the 
number of bits increases, delay also increases as the partial 
products are added in a ripple manner. For example, for 4-bit 
multiplication, it requires 6 adders connected in a ripple 
manner. And 8-bit multiplication requires 14 adders and so on. 
Compensating the delay will cause increase in area. So Urdhva 
Tiryagbhyam algorithm is not that optimal if the number of bits 
is much more. If we use Karatsuba algorithm at higher stages 
and Urdhva Tiryagbhyam algorithm at lower stages, it can 
somewhat compensate the limitations in both the algorithms 
and hence the multiplier becomes more efficient. The circuit is 
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further optimized by using carry select and
instead of ripple carry adders. This reduces t
extent with minimal increase in hardw
algorithms are explained in detail in the belo

A. Urdhva Tiryagbhyam algorithm for multi
    Urdhva-Tiryagbhyam sutra is an ancient V
method for multiplication [2, 3, 4 and 5]. It i
applicable to all cases of multiplication. Th
short and consists of only one compound
‘Vertically and crosswise’. In Urdhva Tiryag
the number of steps required for multiplicati
and hence the speed of multiplication is incre
    An illustration of steps for computing the
bit numbers is shown below [6, 7]. The two 
and b3b2b1b0 and let the  p7p6p5p4p3p2p1
And the temporary partial products are t
partial products are obtained from the steps
line notation of the steps is shown in Fig. 2. 
 

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0. 
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 + a0b1. 
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 + a1b1 + a0b2 
Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 + a2b1 + a1b2 +
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 + a2b2 + a1b3. 
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 + a2b3. 
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3 

 
The product is obtained by adding s1, s2
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ 
 
Product ൌ t6  t5ሾ0ሿ  t4ሾ0ሿ  t3ሾ0ሿ  t2ሾ0ሿ  t1ሾ0ሿ 
             t5ሾ1ሿ  t4ሾ1ሿ  t3ሾ1ሿ  t2ሾ1ሿ  t1ሾ1
                       t3ሾ2ሿ       0          0         0
           
            p7  p6   p5      p4       p3       p2       p1     

 
Fig. 1 Karatsuba-Urdhva multiplier 
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s given below. The 

+ a0b3. 
 ܽ݊݀ s3 as shown 
m obtained. 

   t0  + 1ሿ    0   + 0     0       p0 

This method can be further opt
hardware. A more optimized h
shown in Fig. 3. This model 
need for three operand 7-bit add

and delay. The adders are conne
    The expressions for product b
 p0 ൌ a0b0 p1 ൌ ൌ      ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺa1b0 ݂ ܤܵܮ +p2 ൌ ൌ      ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺAp3 ݂ ܤܵܮ ൌ ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ

   ൌ ሺMSBሺADa1b2+a0b3 p4 ݂ ܤܵܮ ൌ ൌ     ܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺADp5 ݂ ܤܵܮ ൌ ൌܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMSBሺp6 ݂ ܤܵܮ ൌ ൌܣሺ݉ݑ൫ܵ ݂ ܤܵܮ ሺMp7 ݂ ܤܵܮ ൌ ܧܦܦܣ ݂ ݕݎݎܽܥ
 
Since there are more than two 
can use carry save addition to 
technique reduces the delay to 
ripple carry adder. 

model 

Fig. 2 Line notation o

timized to reduce the number of 
hardware architecture [7, 9] is 
actually helps to eliminate the 
der and hence reduces hardware 

ected in ripple manner. 
bits are as shown below. 

2ሻ൯ DDER1ሻ+a2b0 ܴܧܦܦ 1ሻ൯ a0b1ሻ ܴܧܦܦ + a1b1 + a0b2ሻ 3 ܴܧܦܦሻ൯ DER 2ሻ+a3b0 + a2b1 4ሻ൯ DDER1ሻ+a3b1 ܴܧܦܦ+ + a2b2 + a1b3ሻ 5 ܴܧܦܦሻ൯ ሺADDER1ሻ+a3b2 + a2b3ሻ 6 ܴܧܦܦሻ൯ MSBሺADDER1ሻ+a3b3ሻ 6 ܴܧ 

operands in adders 2 to 5, we 
implement adders 2 to 5. This 
a great extend compared to the 
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B. Karatsuba Algorithm for multiplication 
    Karatsuba multiplication algorithm [10, 1
multiplying very large numbers. This metho
Anatoli Karatsuba in 1962. It is a divide an
in which we divide the numbers into their M
and Least Significant half and then multiplic
Karatsuba algorithm reduces the numb
required by replacing multiplication opera
operations. Additions operations are faster th
and hence the speed of multiplier is increas
of bits of inputs increase, Karatsuba algorit
efficient. This algorithm is optimal if width
than 16 bits. The hardware architecture of K
is shown in Fig. 4.  
Productൌ ܺ. ܻ 
X and Y can be written as, ܺ ൌ 2/ଶ.  Xl +  Xr ܻ ൌ 2/ଶ.  Yl +  Yr   

 
Fig. 3 Hardware architecture for 4x4 Ur

Tiryagbhyam multiplier. 
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er of multipliers 
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sed. As the number 
thm becomes more 
h of inputs is more 

Karatsuba algorithm 

                     (1) 
                     (2) 

Where  Xl,  Yl and  Xr,  Yr are 
Least Significant half of X an
number of bits. 
Then,     ܺ. ܻ ൌ ቀ2మ.  Xl +  Xrቁ . ሺ2మ.  Yl
     ൌ 2.  Xl Yl + 2/ଶ ሺ Xl Yr +  
The Second term in equation (3
number of multiplication operat
 
i.e.;   Xl Yr +  Xr Yl ൌ ሺ Xl +  Xrሻ
   
The equation (3) can be re-writt
 ܺ. ܻ ൌ 2.  Xl Yl +  Xr Yr + 2మ ሺ
      െ Xl 
The recurrence of Karatsuba algܶሺ݊ሻ ൌ 3ܶ ቀ2݊ቁ +

 

III. IMPLIMENTA

    The main objective of this pa
an unsigned multiplier which m
both in terms of delay and ar
most important and complex op
designed a multiplier which c
increase in delay and area is sig
number of bits. Proposed u
implemented using Verilog H
units are further optimized by
efficient adders like carry selec
The model is synthesized and si
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The summary of results on Vi

 

rdhva 

Fig. 4 Karatsub

the Most Significant half and 
nd Y respectively, and n is the 

+  Yrሻ Xr Ylሻ +  Xr Yr                      (3) 
 
) can be optimized to reduce the 
tions.  ሻሺ Yl +  Yrሻ െ Xl Yl  െ  Xr Yr    

                   (4) 
ten as,  ሺሺ Xl +  Xrሻሺ Yl +  Yrሻ Yl െ  Xr Yrሻ                          (5) 
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Comparison with various multiplier units is given in tables II, 
III, IV and V 
 

 

 

 

IV. CONCLUSION AND FUTURE WORK 
    This paper shows how to effectively reduce the percentage 
increase in delay and area of a multiplier by using a very 

efficient combination of Karatsuba and Urdhva-Tiryagbhyam 
algorithms. The model can be further optimized in terms of 
delay by using pipelining methods and also by using efficient 
adders instead of ripple adders. 
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